Chern-schwartz-macpherson Classes for Schubert Cells in Flag Manifolds

نویسنده

  • PAOLO ALUFFI
چکیده

We obtain an algorithm computing the Chern-Schwartz-MacPherson (CSM) classes of Schubert cells in a generalized flag manifold G{B. In analogy to how the ordinary divided difference operators act on Schubert classes, each CSM class of a Schubert class is obtained by applying certain Demazure-Lusztig type operators to the CSM class of a cell of dimension one less. These operators define a representation of the Weyl group on the homology of G{B. By functoriality, we deduce algorithmic expressions for CSM classes of Schubert cells in any flag manifold G{P . We conjecture that the CSM classes of Schubert cells are an effective combination of (homology) Schubert classes, and prove that this is the case in several classes of examples. We also extend our results and conjecture to the torus equivariant setting.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shadows of Characteristic Cycles, Verma Modules, and Positivity of Chern-schwartz-macpherson Classes of Schubert Cells

Chern-Schwartz-MacPherson (CSM) classes generalize to singular and/or noncompact varieties the classical total homology Chern class of the tangent bundle of a smooth compact complex manifold. The theory of CSM classes has been extended to the equivariant setting by Ohmoto. We prove that for an arbitrary complex algebraic manifold X, the homogenized, torus equivariant CSM class of a constructibl...

متن کامل

Positivity of Chern classes of Schubert cells and varieties

We show that the Chern-Schwartz-MacPherson class of a Schubert cell in a Grassmannian is represented by a reduced and irreducible subvariety in each degree. This gives an affirmative answer to a positivity conjecture of Aluffi and Mihalcea.

متن کامل

Singular Chern Classes of Schubert Varieties via Small Resolution

We discuss a method for calculating the Chern-Schwartz-MacPherson (CSM) class of a Schubert variety in the Grassmannian using small resolutions introduced by Zelevinsky. As a consequence, we show how to compute the Chern-Mather class and local Euler obstructions using small resolutions instead of the Nash blowup. The algorithm obtained for CSM classes also allows us to prove new cases of a posi...

متن کامل

Differential Forms with Logarithmic Poles and Chern-schwartz-macpherson Classes of Singular Varieties

We express the Chern-Schwartz-MacPherson class of a possibly singular variety in terms of the total Chern class of a bundle of di erential forms with logarithmic poles. As an application, we obtain a formula for the Chern-Schwartz-MacPherson class of a hypersurface of a nonsingular variety, in terms of the Chern-Mather class of a suitable sheaf. x

متن کامل

Interpolation of Characteristic Classes of Singular Hypersurfaces

We show that the Chern-Schwartz-MacPherson class of a hypersurface X in a nonsingular varietyM `interpolates' between two other notions of characteristic classes for singular varieties, provided that the singular locus of X is smooth and that certain numerical invariants of X are constant along this locus. This allows us to de ne a lift of the Chern-Schwartz-MacPherson class of such `nice' hype...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015